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This paper applies an integrated approach using the Taguchi method, artificial neural network (ANN), and 

genetic algorithm (GA) to optimize the weld bead geometry of GTA welding specimens. Many parameters affect 

the quality of the gas tungsten arc (GTA) welding process. It is not easy to obtain optimal parameters of the 

GTA welding process. The proposed approach consists of two stages. First stage executes initial optimization 

via Taguchi method to construct a database for the ANN. In second stage, an ANN is used to provide the 

nonlinear relationship between factors and the response. Then, a GA is applied to obtain the optimal factor 

settings. The experimental results showed that the weld bead geometry of the optimal welding parameters via 

the proposed approach is slender than apply Taguchi method only. 
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I. INTRODUCTION 
The gas tungsten arc (GTA) welding is one of the mainly applied welding processes in industry to 

carbon steels and stainless steels for high quality weld and low investment. However, the relatively shallow 

penetration capability and low productivity are the main disadvantages in the GTA welding process. Achieving 

full penetration of welds and increasing productivity are the main objectives in the welding industry. In order to 

achieve single pass welds with no edge preparation, instead of multipass procedures, one of the most notable 

techniques is to use activating flux with GTA welding process [1]. Several parameters influence the quality of 

GTA welding process. Conventionally, engineers apply the Taguchi method to conduct parameter design in a 

variety of industrial practices. The usage of Taguchi method in the welding process has been proven to be very 

beneficial to process modeling, optimization, and control. For example, Juang et al. [2] used the Taguchi method 

to optimize the weld pool geometry in the GTA welding of stainless steel. However, the Taguchi method has 

some limitations when adopted in practice. It can find optimal solutions only within the specified level of 

control factors. The Taguchi method cannot find the real optimal values when the specified parameters are 

continuous. Artificial neural network (ANN) is a nonlinear function, and can accurately represent a complex 

relationship between inputs and outputs [3, 4]. A trained ANN model has also been used to predict accurately 

the response (output) for specified parameter settings (input). For example, Ciurana et al. [5] used the ANN to 

select appropriate machining conditions to achieve desired dimensions, angles, and roughness features in the 

pulsed Nd:YAG laser micromachining process. In addition, Khaw et al. [6] demonstrated that advantages could 

be gained using the Taguchi concept for ANN design. First, it is the only known method for ANN design that 

considers robustness as an important design criterion, increasing the quality of the ANN. Second, the Taguchi 

method uses orthogonal arrays (OAs) to design an ANN systematically, markedly reducing the design and 

development time for ANN. In this work, a global optimization method, genetic algorithm (GA), is used to 

converge a global optimum among several possible local optimums [7]. GA simulates the biological 

evolutionary process, Darwin’s theory of survival of the fittest. The solution of the optimization problem with 

GA begins with a set of potential solutions or chromosomes that are randomly generated or selected. The entire 

set of these chromosomes comprises a population. The chromosomes evolve during several iterations or 

generations. New generations are generated using crossover and mutation technique. Crossover involves 

splitting two chromosomes and then combining one half of each chromosome with the other pair. Mutation 

involves flipping a single bit of a chromosome. The chromosomes are then evaluated using a certain fitness 

criteria, and the best ones are kept while the others are discarded. This process is repeated until one chromosome 

has the best fitness and thus is taken as the best solution to the problem. For example, Chakraborti et al. [8] 

applied the GA to resolve the complex optimization of Li
+
 ions contained in carbon nanotubes. 

To solve the above optimization problem, a combing ANN and GA (Neural-Genetic) approach is 

proposed to model and optimize the GTA welding process in this work. Ozcelik et al. [9] used the ANN and GA 

to minimize warpage of thin shell plastic parts manufactured by injection molding. Su et al. [3] present an 
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integrated approach of an ANN and GA for the integrated circuit (IC) wire bonding optimization problem. This 

work combines the Taguchi method and a Neural-Genetic approach to determine the optimal conditions of GTA 

welding process. The proposed approach consists of two stages. First stage executes initial optimization via 

Taguchi method to construct a database for the ANN. Second stage applies an ANN with the Levenberg–

Marquardt back-propagation (LMBP) algorithm to construct an ANN model. The process conditions are 

optimized using GA, and the fitness function used in the process conditions optimization of GTA welding is 

based on the ANN model. The outline of the combining the Taguchi method and a Neural-Genetic approach is 

given in Fig. 1. An initial population is generated at random, and the fitness function based on ANN model is 

used to calculate the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.—Schematic diagram of experimental procedure. 

 

fitness for all initial individuals. Then, selection, crossover and mutation are used to reproduce a new 

generation. The process is repeated until the maximum generation number or population convergence is 

reached. The ANN and GA software of MATLAB toolbox were used to develop the required network model 

and search global optimization in this work. 

Initial optimization via the taguchi method Parameter of the GTA Welding Process 

The GTA welding quality is strongly characterized by the weld bead geometry. The weld bead 

geometry plays an important role in determining the mechanical properties of the weld [2, 10]. Measurements of 

the weld bead geometry were performed for evaluation of the quality of GTA welds. This work took the width 

of weld bead and the depth of penetration to describe the weld bead geometry. The depth-to-width ratio (DWR) 

of the weld bead geometry of each specimen was selected as the quality characteristic of GTA welding process. 

The previous experiment [11] showed that the most significant parameters for DWR of weld bead geometry are 
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welding current, travel speed of the welding torch, and electrode angle in GTA welding process. Results from 

the literature [12] indicate that oxide flux TiO2 has the most pronounced effect on welds morphology, resulting 

in a large DWR on low carbon steel. In addition, Huang et al. [13] and Yang et al. [14] proved that oxide flux 

SiO2 cause an important increase in penetration on JIS SUS 304 stainless steel in bead-on-plate GTA welding 

process. Therefore, welding current, travel speed of the welding torch, electrode angle, and the different 

proportion of oxide TiO2 and SiO2 for mixed fluxes were selected as the control factors. The values of the 

welding process parameters at the different levels are listed in Table 1. Cleanliness of the weld joint areas was 

selected as the noise factor in this work. The surface impurities were removed, and the surface was cleaned with 

acetone at level one (N1). The specimens at level two (N2), without any cleaning treatment, may have been 

tarnished with dirt and/or grease. 

 

Orthogonal Array Experiment and ANOVA 

Four four-level control factors, as well as one noise factor, were considered in this work. The 

interaction effect between the welding parameters is not considered. Therefore, the four control factors yield 12 

degrees of freedom. The L16 (4
5
) OA that has 15 degrees of freedom was employed in this work. Table 2 

presents an experimental layout with an inner array for control factors and an outer array for a two-level noise 

factor (N1 and N2). The DWR of weld bead geometry of the specimens, as discussed earlier, is a higher-is-

better (HB) quality characteristic. The signal-to-noise 

 

Table 1.—Control factors and their levels. 

Factor 

Process 

parameter Level 1 Level 2 Level 3 Level 4 

      

A Electrode angle 60 65 70 75 

B Welding current 165 A 170 A 175 A 180 A 

C Travel speed 165 mm min
−1 

160 mm min
−1 

155 mm min
−1 

150 mm min
−1 

D Proportion 20% TiO2 40% TiO2 60% TiO2 80% TiO2 

 of mixed flux 80% SiO2 60% SiO2 40% SiO2 20% SiO2 

 

Table 2.—Experimental layout using an L16 orthogonal array and results. 

  

Control 

factor   Noise factor   

           

      

N1 

specimen N2 specimen   

Trial no. A B C D DWR DWR 

SNR, 

dB 

           

1 1 1 1 1  0.738 0.735  −2.655 

2 1 2 2 2  0.520 0.507  −5.791 

3 1 3 3 3  0.526 0.562  −5.299 

4 1 4 4 4  0.686 0.656  −3.468 

5 2 1 2 3  0.559 0.544  −5.166 

6 2 2 1 4  0.454 0.419  −7.220 

7 2 3 4 1  0.736 0.757  −2.541 

8 2 4 3 2  0.664 0.640  −3.847 

9 3 1 3 4  0.408 0.450  −7.377 

10 3 2 4 3  0.704 0.660  −3.342 

11 3 3 1 2  0.623 0.604  −4.250 

12 3 4 2 1  0.725 0.673  −3.126 

13 4 1 4 2  0.608 0.696  −3.775 

14 4 2 3 1  0.653 0.578  −4.262 

15 4 3 2 4  0.532 0.520  −5.582 

16 4 4 1 3  0.616 0.633  −4.091 

           

 

Average SNR of total trial ˆ is −4 487 (dB). 

ratios (SNR), which condense multiple data points in a trial, depend on the characteristic that is being evaluated 

[15]. The equation for the SNR of HB characteristic is 
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SNR = −10 log  

1  
n 

1 

 (1) 
n
 i=1 yi

2 

       

 

 

where n is the number of tests in a trial (which equals number of repetitions regardless of noise levels) and yi is 

the DWR of weld bead geometry of the specimens. The value of n is two in this work. Table 2 corresponds to 

the SNR of each trial. Figure 2 plots the SNR graph obtained from Table 2. The initial optimal combinations of 

GTA welding process parameter levels, A1B4C4D1, are obtained from Fig. 2. Table 3 is the results of ANOVA 

for the weld bead geometry in first stage. The travel speed and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.—SNR graph for the weld bead geometry. 

 

 

Table 3.—Results of ANOVA for the weld bead geometry. 

 

Degree 

of Sum of Mean  Pure sum Percent 

Factor freedom square square 

F-

Test of square 

contributi

on 

       

A 3 0.325
# 

– – – – 

B 3 4.977 1.659 2.87 3.24 10.01 

C 3 8.581 2.860 4.94 6.84 21.14 

D 3 15.339 5.113 8.83 13.60 42.02 

Error 3 3.149     
Error

 

pooled (6) (3.474) (0.579)  8.68 26.83 

Total 15 32.371   32.371 100 

       

 

The factors are treated as pooled error.
 

the different proportion of oxide TiO2 and SiO2 for mixed fluxes were the significant welding 

parameters in affecting the quality characteristic, with the different proportion of mixed fluxes being the most 

significant, as indicated by Table 3. 

 

Confirmation Tests 

The final step of first stage is to compare the estimated value with the confirmative experimental value, 

using the optimal levels of the control factors to confirm experimental reproducibility. The estimated SNR opt 

using the optimal level of the control factors, is calculated as 

 

  q   
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opt = ˆ + 

 

j=1 
j − ˆ (2) 

    

 

 

 

where ˆ is the total average SNR of all the experimental 

values, j  is the mean SNR at the optimal level, and q is 

 

the number of the control factors that significantly influence the quality characteristic. Table 3 reveals that 

control factor A has the least effect on the quality characteristic. In order to prevent an over-estimate [16], 

control factor A is not considered and the estimated SNR opt is computed as 

 

opt = −4 487 + −3 633 + 4 487 

 

+ −3281+4487 + −3146+4487 

 

= −1 086 (dB)                                                           (3) 

 

The confidence limits on the above estimation can be calculated. 

The effective sample size is  

n
eff 

= 

N 

(4) 

 

 1 + DOFopt 

 

 

Table 4.—Confirmation results of the Taguchi method. 

  

Depth-to-width 

ratio, DWR   

      

Trial N1 N2   Confidence 

no. 

specime

ns 

specimen

s SNR, dB Average interval (95%) 

      

17 0.785 0.778 −2.146 0.781 

−1.086 ± 1.472 

(dB) 

    D=5806  

    

W 

=7432  

 

 

where N is the total number of trials, and DOFopt is the total degrees of freedom that are associated with the 

items 

used to estimate opt . 

Given a CI of 95% for the DWR, F0 05 1 6 = 5 99, and Vep = 0 579, N = 16, DOFopt = 9, and the effective 

sample size neff is 1.6. Therefore, the CI is computed to be CI = 1 472 (dB). The experimental results (Table 4) 

confirm that the initial optimizations of the GTA welding process parameters were achieved in first stage of the 

proposed approach. 

 

Optimization using a neural-genetic approach 

ANNs are used to model complex manufacturing processes, typically for process and quality control 

[17]. Several well-known supervised learning networks use a back-propagation (BP) neural network. Funahashi 

[18] proved that the BP neural network may approximately realize any continuous mapping. Back propagation 

learning employs a gradient descent algorithm to minimize the mean square error between the target data and 

the predictions of a neural network. However, one of the major problems with basic BP algorithm (gradient 

descent algorithm) has been the extended training time required. The techniques for accelerating convergence 
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have fallen into two main categories: heuristic methods and standard numerical optimization methods such as 

the LMBP algorithm [19]. 

An ANN with the LMBP algorithm is used to provide the nonlinear relationship between factors and 

the response. Then, a GA is applied to obtain the optimal factor settings. The LMBP algorithm is similar to the 

quasi-Newton method, in which a simplified form of the Hessian matrix (second derivatives) is used. When the 

cost function has the form of a sum of squares, then the Hessian matrix H can be approximated as 

 

H=J
T
J (5) 

and the gradient g can be computed as  

g = J 
T
 e (6) 

 

where J is the Jacobian matrix that contains first derivatives of the network errors with respect to the 

weights and biases, and e is a vector of network errors. The Jacobian matrix can be computed through a standard 

BP technique that is much less complex than computing the Hessian matrix [20]. An iteration of this algorithm 

can be written as 

 

XK+1 = XK −   
T
 J +    

−1
J 

T
 e (7) 

 

when the scalar is zero, this is just Gauss–Newton, 

using the approximate Hessian matrix. When is large, this becomes gradient descent with a small step size. The 

algorithm begins with set to some small value (e.g., 

= 0 01). If a step does not yield a smaller value for e, 

 

then the step is repeated with   multiplied by some factor 1 (e.g.,   = 10). Eventually, e should be 

decreased, since we would be taking a small step in the direction of steepest descent. If a step does produce a 

smaller value for e, then   is divided by   for the next step, ensuring that the algorithm will approach Gauss–

Newton, which should provide faster convergence [19]. The LMBP algorithm is the fastest algorithm that has 

been tested for training multilayer networks of moderate size, even though it requires a matrix inversion at each 

iteration. It requires two parameters, but the algorithm does not appear to be sensitive to this 

selection. 

 

Training of Back Propagation Network 

Multilayer feed-forward ANNs are commonly used for solving difficult predictive modeling problems 

[21]. They typically consist of an input layer, one or more hidden layers, and one output layer. The neurons in 

the hidden layers are computational units that perform non-linear mapping between inputs and outputs. A feed-

forward ANN was used in this work. It takes a set of four input values (control factors A, B, C, and D) and 

predicts the value of two outputs (depth and width of the weld bead geometry). The transfer functions for all 

hidden neurons are tangent sigmoid functions, and a linear function is used for the output neurons. Determining 

the number of hidden neurons is critical in the design of neural networks. An over abundance of hidden neurons 

give too much flexibility that usually leads to over-fitting. On the other hand, too few hidden neurons restrict the 

learning capability of a network and degrade its approximation performance [21]. A total of 32 input–output 

data patterns were separated into a training set and a testing set. Functionally, 80% (26 patterns) were randomly 

selected to train the neural network; 20% (6 patterns) were randomly selected for testing. An efficient algorithm, 

the Levenberg–Marquardt algorithm, was adopted to improve classical BP learning in the training process. 

 

Select a Well-Trained Network Model 

Table 5 presents ten options for the ANN architecture. After comparing all the data for the mean square 

error (MSE) value, the structures 4-8-2, 4-10-2, 4-12-2, 4-18-2, and 4-20-2 are the five best convergence 

criteria. The structure 4-10-2 showed the least simulating error and was, therefore, selected to obtain a better 

performance. The simulating errors were compared with average D and W value of confirmation experimental 

results (as shown in Table 4). Figure 3 presents the topology of the network 4-10-2 with a value of 0.001 and a 

value of 10. This well-trained network was employed to create the fitness function. 

 

Table 5.—Options for different networks. 

 Mean square  Simulating  %   
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error, (Compare 

  with the average value in 

Table 4) 

 

 

error for Rank of 

 

    

    

Architectur

e training MSE D value (%) 

W value 

(%)  

      

4-2-2 0 162199     

4-4-2 0 158015     

4-6-2 0 346066  

−16 01 

  

4-8-2 0 0950624 5 0 13  

4-10-2 0 0723461 3 −11 43 −1 47  

4-12-2 0 0637613 1 −13 77 −10 37  

4-14-2 0 0968101     

4-16-2 0 0953464  

−41 52 −10 87 

 

4-18-2 0 0637613 1  

4-20-2 0 077998 4 20 45 −5 30  

 

Optimization via a Neural-Genetic Approach 

In order to use the GA to optimize welding process parameters, an index to evaluate the next 

generation’s survival fitness was needed. This work made a fitness function using the weld bead geometry, 

which based on a well-trained network model. Excessive welding bead width and penetration do not produce 

good weld quality. Therefore, this study used the following objective function, with bead width and depth of 

penetration 

 

FObject = w1 ×   s − Wd  
2
 + w2 ×   s − Dd  

2 
(8) 

 

where Wd and Dd are the desired bead width and depth of penetration by the designer, Ws and Ds are the bead 

width and depth of penetration obtained from the simulation results of ANN model. As to w1 and w2, they are 

the weights reflecting the importance of weld bead geometry. In this work, the desired values used were Wd = 5 

5 mm, Dd = 5 mm, the weights w1 = 0 1, w2 = 0 5. Thus, to obtain the desired bead geometry was to find the 

welding parameters that minimize the FObject. An initial population is generated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.—The BP network topology. 

 

Table 6.—Results of the proposed approach. 

 Depth-to-width ratio, DWR  
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Trial no. 

N1 

specimens N2 specimens 

Avera

ge 

    

18 0.915 0.910 0.912 

    

 

at random, and the fitness function based on ANN model and objective function is used to calculate the 

fitness. The critical parameters of the GA are the size of the population, mutation rate, number of the iterations 

(i.e., generations) etc. In this work, population size = 20, crossover rate = 1 0, mutation rate = 0 1, bit number 

for each variable = 16, and the number of iterations = 50 are utilized. 

 

The Comparison 

The proposed approach yielded the welding condition that optimized the DWR of a GTA welding 

specimen: electrode angle = 64 7 , welding current = 177 5 A, travel speed = 147 8 mm min
−1

 and proportion of 

mixed fluxes = 18%TiO2 + 82%SiO2. Table 6 presents the experimental results obtained using these optimal 

welding parameters. Comparing Table 4 with 6 reveals that the improvement in the average DWR when the 

initial optimal parameters are changed to the real optimal parameters is 0.131. In summary, the proposed 

approach efficiently improves the quality of the GTA welding process. Comparison of Fig. 4(a) with 4(b) shows 

the improvement of average DWR of weld bead geometry from initial optimization via the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.—Weld bead geometry for validating: (a) apply Taguchi method, DWR = 0 785; (b) apply proposed 

approach, DWR = 0 915. 

 

 

Taguchi method to real optimization using the proposed approach is 16.77%. 

 

II. CONCLUSIONS 
This paper presents an integrated approach of the Taguchi method, ANN and GA for the GTA welding 

optimization problem. The Taguchi method is first used to construct a database. An ANN with the LMBP 

algorithm is used to develop the nonlinear relationship model between factors and response. Then, a GA is 

applied to obtain the optimal factor settings. The proposed approach is relatively effective and easy for 

engineers to follow. This paper also conducts a comparison between the proposed approach and the Taguchi 
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method. The improvement of the average DWR from initial optimal parameters (applying Taguchi method only) 

to the real optimal parameters (applying proposed approach) is about 16.77%. 
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